You have reached the United States portal for Human Kinetics, if you wish to continue press here, else please proceed to the HK site for your region by selecting here.


Please note if you purchase from the HK-USA site, currencies are converted at current exchange rates and you may incur higher international shipping rates.

Purchase Digital Products

If you are looking to purchase an eBook, online video, or online courses please press continue

Purchase Print Products

Human Kinetics print books are now distributed by Footprint Books throughout Australia/NZ, delivered to you from their NSW warehouse. Please visit Footprint Books to order your Human Kinetics print books.

Physical Activity and Type 2 Diabetes eBook

Physical Activity and Type 2 Diabetes eBook

Author:

Available

$74.00 USD

Available As



    Ebook

    Physical Activity and Type 2 Diabetes is also available as an e-book. The e-book is available at a reduced price and allows students to highlight and take notes throughout the text. When purchased through the Human Kinetics site, access to the e-book is immediately granted when the order is received.

    Over the past 50 years, there has been a dramatic increase in the prevalence of interrelated metabolic disease states, including obesity, insulin resistance, and type 2 diabetes mellitus. In modern Western nations, the population-based prevalence of insulin resistance is approaching 20%, and type 2 diabetes is now the most common endocrine disorder in adults. No longer a disease reserved for the aging population, type 2 diabetes is also on the rise in adolescents. Approximately 30% of all newly diagnosed cases (between 1982 and 1994 in the United States alone) are among people 10 to 19 years of age.

    For those engaged in a struggle against this modern-day epidemic, Physical Activity and Type 2 Diabetes provides cutting-edge research to energize current efforts in diabetes prevention, management, and treatment. The most in-depth and up-to-date book on the topic, Physical Activity and Type 2 Diabetes presents a series of independent but related chapters authored by the foremost researchers of insulin resistance examining topics such as these:

    • Physical inactivity as a primary cause for the rising incidence of insulin resistance
    • The emergence of an “exercise-deficient” phenotype
    • The effects of exercise training on selected aspects of substrate metabolism
    • The role of endurance and resistance training programs for the prevention and treatment of insulin resistance
    • The identification of new molecular targets and pathways useful for the treatment of insulin resistance and type 2 diabetes.

    Physical Activity and Type 2 Diabetes provides a four-part, in-depth examination of the relational nature of diabetes and physical activity. Part I begins with a description of the scope and extent of the “diabesity” epidemic. The risk factors for diabetes, the underlying causes of the epidemic, and its potential consequences are outlined as well as the role of physical inactivity in the pathogenesis of diabetes and plans for preventive exercise biology.

    Part II continues with an examination of some of the major defects of substrate metabolism in individuals with insulin resistance, while in part III the authors discuss the impact of exercise interventions in the prevention, management, and treatment of type 2 diabetes. Part IV presents recent developments in molecular and cellular biology that may provide treatment therapies for the prevention of type 2 diabetes.

    Based on extensive research, Physical Activity and Type 2 Diabetes presents a wealth of information to assist the biomedical and research community in creating prescriptive therapeutic tools for type 2 diabetes intervention—and offers hope for the alleviation of the global epidemic of insulin resistance.

    Audience

    A professional reference for clinical research scientists, research fellows, academic and pharmacological scientists, clinical investigators, governmental agencies, and health care clinicians in the areas of basic and applied research, wellness, and health care promotion; a research-based text for graduate-level courses and seminars.

    Table of Contents

    Part I: Aetiology of Insulin Resistance and Type 2 Diabetes: Prevalence and Consequences of the “Diabesity” Epidemic

    Chapter 1: The Increasing Burden of Type 2 Diabetes: Magnitude, Causes, and Implications of the Epidemic
    Edward W. Gregg, PhD, and Andrea K. Kriska, PhD
    Trends in Prevalence and Incidence
    Risk Factors for Diabetes and Causes of the Epidemic
    Determinants of Recent Trends in the Epidemic
    Anticipated Consequences of Diabetes and the Outlook for Prevention
    Concluding Remarks

    Chapter 2: Waging War on Type 2 Diabetes: Primary Prevention Through Exercise Biology
    Frank W. Booth, Manu V. Chakravarthy, and Matthew J. Laye
    Scope of the Problem
    Rationale for action
    Physical Inactivity’s Contributing Role in the Pathogenesis of Diabetes
    New Ammunitions
    Future Battle Plans
    Concluding Remarks

    Part II: Defects in Metabolism and Insulin Resistance

    Chapter 3: Fatty Acid Uptake and Insulin Resistance
    Arend Bonen, Adrian Chabowski, Jan F.C. Glatz, and Joost J.F.P. Luiken
    LCFAS and Their Uptake Across the Sarcolemma
    Fatty Acid Transporters
    Fatty Acid Transport and Transporters in Human Obesity and Type 2 Diabetes
    Concluding Remarks

    Chapter 4: Lipid Metabolism and Insulin Signaling
    Jason R. Berggren, Leslie A. Consitt, and Joseph A. Houmard
    Lipid Metabolism in Skeletal Muscle
    The Insulin-Signaling Pathway
    Does Lipid Exposure Impair Insulin Action?
    Perturbations in Lipid Metabolism, Insulin Signal Transduction, and Insulin Action With Type 2 Diabetes and Obesity
    The Exercise Paradox
    Effect of Weight Loss on Muscle Lipid Accumulation and Insulin Signaling
    Concluding Remarks

    Chapter 5: Metabolic Inflexibility and Insulin Resistance
    Bret Goodpaster, PhD, and David E. Kelley, MD
    Substrate Utilization During Resting Conditions in Lean, Healthy Individuals
    Substrate Utilization in Insulin-Resistant Individuals
    Potential Cellular Mechanisms for Metabolic Flexibility in Fat Oxidation
    Effects of Weight Loss on Metabolic Flexibility in Obesity and T2DM
    Effects of Exercise Training on Metabolic Flexibility in Obesity and T2DM
    Concluding Remarks

    Chapter 6: Nutrient Sensor Links Obesity With Diabetes Risk
    Sarah Crunkhorn and Mary Elizabeth Patti
    Nutrient Sensing and Control of Food Intake
    Overnutrition, Disruption of Homeostatic Control, and Insulin Resistance
    Cellular Nutrient Sensing
    Concluding Remarks

    Chapter 7: Inflammation-Induced Insulin Resistance in Obesity: When Immunity Affects Metabolic Control
    Phillip James White and André Marette
    Obesity Is a Chronic Low-Grade Inflammatory State
    Evolution of Inflammation in Obesity
    Lipid Mediators
    Protein Kinase Mediators
    Transcriptional Mediators
    Concluding Remarks

    Part III: Prevention of Type 2 Diabetes Through Exercise Training

    Chapter 8: Transcription Factors Regulating Exercise Adaptation
    David Kitz Krämer and Anna Krook
    Activation of MAP Kinase Signaling
    Factor of Activated T Cells (NFAT)
    Regulation of GLUT4 Expression
    Mitochondria Biogenesis and Increased Lipid Oxidation
    Exercise-Mediated Regulation of PPARs
    Peroxisome Proliferators Activated Receptor Gamma Coactivator (PGC)-1
    Concluding Remarks

    Chapter 9: Exercise and Calorie Restriction Use Different Mechanisms to Improve Insulin Sensitivity
    Gregory D. Cartee, PhD
    Exercise and Calorie Restriction Effects on Skeletal Muscle Energy Status
    Exercise/Contraction-Stimulated Signaling Pathway for Glucose Transport
    Exercise Training Effects on Insulin Sensitivity and Insulin Signaling
    Effects of Calorie Restriction Distinct From Weight Loss
    Effects of Calorie Restriction on Insulin Signaling in Skeletal Muscle
    Combined Effects of Exercise and Calorie Restriction
    Concluding Remarks

    Chapter 10: Mitochondrial Oxidative Capacity and Insulin Resistance
    Kevin R. Short
    An Overview of Mitochondrial Structure and Function
    Evidence for a Role for Mitochondria in Insulin Resistance and Diabetes
    Evidence That Mitochondria Are Not Responsible for Insulin Resistance
    Concluding Remarks

    Chapter 11: Effects of Acute Exercise and Exercise Training on Insulin Action in Skeletal Muscle
    Erik A. Richter and Jørgen F.P. Wojtaszewski
    Exercise and Contraction Signaling in Muscle
    Insulin Signaling: A Web
    Effect of a Single Bout of Exercise on Insulin Sensitivity
    Effects of Exercise Training on Insulin Action
    Concluding Remarks

    Chapter 12: Resistance Exercise Training and the Management of Diabetes
    Jørgen F.P Wojtaszewski, Henriette Pilegaard, and Flemming Dela
    Resistance Training and Insulin Sensitivity
    Mechanisms Behind Resistance Training–Induced Improvements in Insulin Sensitivity
    Training-Induced Gene Expression
    Conclusion and Perspectives
    Concluding Remarks

    Part IV: Prevention of Type 2 Diabetes: Identification of Novel Molecular Targets and Pathways

    Chapter 13: AMPK: The Master Switch for Type 2 Diabetes?
    W.W. Winder and D.M Thomson
    Discoveries Suggesting AMPK Could Be Important for Prevention and Treatment of Type 2 Diabetes
    Could Type 2 Diabetes Be a Consequence of Deficiency in AMPK Signaling?
    How Can AMPK Activation Help Prevent Type 2 Diabetes?
    Can Chemical AMPK Activation Prevent Diabetes?
    Feasibility of Using AMPK Activators
    Future Directions
    Concluding Remarks

    Chapter 14: Protein Kinase C and Insulin Resistance
    Carsten Schmitz-Peiffer
    The PKC Family of Serine or Threonine Kinases
    Roles for PKC in Normal Glucose Homeostasis
    PKC and Defective Glucose Disposal
    Concluding Remarks

    Chapter 15: Evidence for the Prescription of Exercise as a Therapy for the Treatment of Patients With Type 2 Diabetes
    Sarah J. Lessard and John A. Hawley
    Options for the Treatment of Insulin Resistance and Type 2 Diabetes
    Molecular Evidence for the Prescription of Exercise Training
    Exercise and Drug Combination Therapy
    Exercise-Like Effects of Current Antihyperglycemic Drugs
    Prescription of Exercise Training: Practical Considerations
    Concluding Remarks

    About the Editor

    John A. Hawley, PhD, is professor and head of the Exercise Metabolism and Diabetes Research Group in the School of Medical Sciences at the Royal Melbourne Institute of Technology in Melbourne, Australia, where he has a postgraduate research program comprising eight postdoctoral and doctoral students. His areas of research include the regulation of fat and carbohydrate metabolism, with a particular emphasis on insulin resistance and type 2 diabetes, and the role of exercise training in alleviating the metabolic syndrome.

    A fellow of the American College of Sports Medicine and a member of the American Physiological Society, Hawley serves as an editorial board member for the American Journal of Physiology: Endocrinology and Metabolism, Sports Medicine, the International Journal of Sport Nutrition and Exercise Metabolism, the International Journal of Sports Physiology and Performance, and the Malaysian Journal of Sport Science and Recreation. Hawley is also a regular reviewer for many international journals.

    In 1990, Hawley received the Medical Research Council (MRC) Scholarship for Outstanding Foreign Researcher from the South Africa MRC (1990-1992), which is awarded to assist doctoral studies in medical physiology. Hawley completed his PhD in physiology in 1993 while studying at the University of Cape Town Medical School, South Africa.

    Hawley has published more than 150 papers in medical, biochemical, and sport science journals, three books, and 15 book chapters and has served as a visiting lecturer for the University of Otago, New Zealand; the African International Olympic Committee Sports Medicine Program; and the International Olympic Committee Sports Medicine Program. As an invited speaker at conferences and symposiums throughout Europe, the United States, Australia, New Zealand, and Malaysia, Hawley speaks on a range of subjects, including exercise as a therapy for the prevention of metabolic syndrome, mechanisms for improvements in insulin resistance after physical activity, the relationship of exercise to insulin resistance and diabetes, and nutritional strategies and exercise performance.

    Juleen R. Zierath, PhD, is professor of physiology and head of the section of integrative physiology in the department of surgical science, Karolinska Institutet, Stockholm, Sweden, and an adjunct professor of biochemistry at Boston University School of Medicine.

    Zierath leads an active research group consisting of members representing 10 countries. Through clinical and experimental research approaches, her group has unraveled the signaling mechanisms that mediate hormone action to promote glucose and lipid metabolism. In collaboration with a leading pharmaceutical company, she has contributed to the discovery of a nonprotein insulin receptor agonist that may offer a new type of oral treatment for people with diabetes. Her group collaborates with leading research groups from Scandinavia, Europe, Asia, and North America and is primarily funded by the Swedish Research Council, the Swedish Strategic Research Foundation, and the European Union.

    She has published more than 150 peer-reviewed scientific papers, including 35 review articles in journals focused on endocrinology, metabolism, diabetes mellitus, and exercise physiology. She has also coauthored a textbook with Harriet Wallberg-Henriksson on the subject of skeletal muscle metabolism.

    Zierath is the recipient of numerous awards, including the Minkowski Award from the European Association for the Study of Diabetes, the Fernström Award from Karolinska Institutet, and a Future Research Leader Award from the Foundation for Strategic Research, Sweden.

    Reviews

    “In all, this volume offers a valuable update on factors underlying the benefits of exercise in the prevention and treatment of type 2 diabetes.”

    -Applied Physiology, Nutrition, and Metabolism